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Abstract: This paper studies two stochastic BMAP arrival and bulk service C server queues (A) and (B) with k 
varying environments. The arrivals to the queue are governed by a batch Markovian arrival process of i version 

and the bulk service times are exponential with parameter μi in the environment i for 1 ≤ i ≤ k* respectively. 

When the environment changes from i to j, changes occur for arrival and service as follows: the arrival BMAP 

representation changes from the i version to the j version, the residual arrival time starts with the stationary 

probability vector of the j version BMAP, it becomes the initial j version upon arrival of customers and the 

exponential service time parameter changes from μi to μj  for 1 ≤ i, j ≤ k*. The system has infinite storing 

capacity and the service bulk sizes are finite valued random variables. Matrix partitioning method is used to 

study the models. In Model (A) the maximum of the arrival sizes M in all the environments is greater than the 

maximum of the service sizes N in all the environments, (M > N), and the infinitesimal generator is partitioned 

as blocks of the sum of the number of BMAP phases  of all environments times the maximum of the arrival 

sizes for analysis. In Model (B) the maximum of the arrival sizes M in all the environments is less than the 

maximum of the service sizes N in all the  environments, (M < N), where the infinitesimal generator is 

partitioned using blocks of the sum of the number of BMAP phases  of all environment times the maximum of 
the service sizes for analysis. Five different cases associated with C, M and N due to partitions are treated. They 

are namely, (A1) M >N ≥ C, (A2) M ≥ C >N (A3) C >M >N, which come up in Model (A); (B1) N ≥ C and 

(B2) C >N, which come up in Model (B) respectively. For the cases when C ≤ M or N Matrix Geometric results 

are obtained and for the cases when C > both M and N Modified Matrix Geometric results are presented. The 

basic system generator is seen as a block circulant matrix in all the cases. The stationary queue length 

probabilities, its expected values, its variances and probabilities of empty queue levels are derived for the 

models using Matrix Methods. Numerical examples are presented for illustration 
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I. INTRODUCTION 
In this paper two multi server queues with batch Markovian arrival process (BMAP) and bulk service have been 
studied with random environments using matrix geometric methods. For M/M/1 bulk queues with random 

environment models one may refer to Rama Ganesan, Ramshankar and Ramanarayanan [1] and M/M/C bulk 

queues with random environment models are of interest in Sandhya, Sundar, Rama, Ramshankar and 

Ramanarayanan [2]. PH/PH/1 bulk queues without variation of environments have been treated by Ramshankar, 

Rama Ganesan and Ramanarayanan [3] and the same type of queues with random variation of environments are 

studied by Ramshankar, Rama, Sandhya, Sundar and Ramanarayanan [4]. Bini, Latouche and Meini [5] have 

studied numerical methods for Markov chains. Chakravarthy and Neuts [6] have discussed in depth a multi-

server queue model.  Gaver, Jacobs and Latouche [7] have treated birth and death models with random 

environment. Latouche and Ramaswami [8] have analyzed Analytic methods. For matrix geometric methods 

and models one may refer Neuts [9]. Batch Markovian arrival processes are presented by Lucantony [10] and 

are analyzed also by Cordeiro and Khroufch [11]. The models considered in this paper are general compared to 

existing queue models in literature since a BMAP arrival and multi server bulk service queue with random 
environment has not been studied at any depth so far. The number of servers increases with the arrival of 

number of customers till it becomes C. Usually the partitions of the bulk arrival models have M/G/1 upper-

Heisenberg block matrix structure with zeros below the first sub diagonal. The decomposition of a Toeplitz sub 

matrix of the infinitesimal generator is required to find the stationary probability vector. In this paper the 

partitioning of the matrix is carried out in a way that the stationary probability vectors have a Matrix Geometric 

solution or a Modified Matrix Geometric solution for infinite capacity C server bulk arrival and bulk service 

queues with randomly varying environments.   
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Two models (A) and (B) on BMAP/M/C bulk queue systems under k* varying environments with infinite 

storage space for customers are studied here using the block partitioning method. The M/PH/1 and PH/M/C 

queues with random environments have been studied by Usha in [12] and [13] without bulk arrivals and bulk 

services. It has been noticed by Usha in [12, 13] that when the environment changes the remaining arrival and 

service times are to be completed in the new environment. The residual arrival time and the residual service time 

distributions in the new environment are to be considered at an arbitrary epoch since the spent arrival time and 

the spent service time have been in the previous environment with distinct sizes of PH phase. Further new 

arrival time and new service time from the start using initial PH distributions of the new environment cannot be 

considered since the arrival and the service have been partly completed in the previous environment indicating 
the stationary versions of the arrival and service distributions in the new environments are to be used for the 

completions of the residual arrival and service times in the new environment and on completion of the same the 

next arrival and service onwards they have initial versions of the PH distributions of the new environment. The 

stationary version of the distribution for residual time has been well explained in Qi-Ming He [14] where it is 

named as equilibrium PH distribution. Ramshankar, Rama, Sandhya, Sundar, Ramanarayanan in [4] have 

studied PH/PH/1 queue models with bulk arrival, bulk service with random environment introducing the 

stationary version for the residual times.  In this paper the stationary probability starting vector of the new 

version is used when the environment changes for the residual arrival time and it becomes the initial new 

version of BMAP distribution after the arrival. Model (A) presents the case when M, the maximum of all the 

maximum arrival sizes in the environments is bigger than N, the maximum of all the maximum service sizes in 

all the environments. In Model (B), its dual, N is bigger than M, is treated. In general in Queue models, the state 
space of the system has the first co-ordinate indicating the number of customers in the system but here the 

customers in the system are grouped and considered as members of M sized blocks  of customers (when M >N) 

or N sized blocks of customers (when N > M) for finding the rate matrix. For the C server system under 

consideration, Model (A) gives three cases namely (A1) M > N ≥ C, (A2) M ≥ C > N and (A3) C > M > N and 

Model (B) gives two cases namely (B1) N ≥ C, and (B2) C > N. The case M=N with various C values can be 

treated using Model (A) or Model (B). The matrices appearing as the basic system generators in these models 

due to block partitions are seen as block circulant matrices. The stationary probability of the number of 

customers waiting for service, the expected queue length, the variance and the probability of empty queue are 

derived for these models. Numerical cases are presented to illustrate their applications. The paper is organized in 

the following manner. In section II and section III the BMAP/M/C bulk service queues with randomly varying 

environment in which maximum arrival size M is greater than maximum service size N and the maximum 

arrival size M less than the maximum service size N are studied respectively with their sub cases. In section IV 
numerical cases are presented. 

           

II. MODEL (A). MAXIMUM ARRIVAL SIZE M GREATER 

THAN MAXIMUM SERVICE SIZE N 
2.1Assumptions for M > N.   

(i) There are k* environments. The environment changes as per changes in a continuous time Markov chain with 

infinitesimal generator 𝒬1  of order k* with stationary probability vector ϕ. 
                                                                       

(ii) In the environment i for 1 ≤ i ≤ k*, the batch arrivals occur in accordance with Batch Markovian Arrival 

Process with matrix representation for the rates of batches of size m ≤ 𝑀𝑖 given by the finite sequence {𝐷𝑚
𝑖 , 0 ≤ 

m ≤ 𝑀𝑖} with phase order 𝑘𝑖  where 𝐷0
𝑖  has negative diagonal elements and its other elements are non-negative; 

𝐷𝑚
𝑖  has non-negative elements for 1 ≤ m ≤ 𝑀𝑖. Let 𝐷𝑖  = 𝐷𝑚

𝑖𝑀
𝑚=0  and  𝜑𝑖  be the stationary probability vector of 

the generator matrix 𝐷𝑖  with  𝜑𝑖𝐷
𝑖  = 0 and 𝜑𝑖e = 1 for 1 ≤ i ≤ k*. 

                                                                                                                                                                                                                                                                                   

(iii) When the environment changes from i to j for 1 ≤ i, j ≤ k*, the arrival process BMAP of the j version starts 

as per stationary (equilibrium) probability vector of the j version of the arrival process for the completion of the 

residual arrival time there after the arrivals occur as per BMAP of the j version, namely, { 𝐷𝑚
𝑗

 0 ≤ m ≤ 𝑀𝑗 }.  

 

(iv)Customers are served in batches of different bulk sizes. There are s servers to serve when s customers are 

present in the system for 1≤ s ≤ C. When C or more than C customers are present in the system the number of 

servers to serve customers is C. In the environment i for1 ≤ i ≤ k*, the time between consecutive bulk services 

has exponential distribution with parameter s𝜇𝑖  when s customers (s servers ) are in the system for 1≤ s ≤ C and 

with parameter C𝜇𝑖  when C or more than C customers (C servers )are present where 𝜇𝑖  is the parameter of 

single server exponential service time distribution. At each service epoch in the environment i, 𝜓𝑖 customers are 

served with probabilities given by P (𝜓𝑖 = j) = 𝑞𝑗
𝑖  for 1≤ j ≤ 𝑁𝑖 when more than 𝑁𝑖 customers are waiting for 
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service where  𝑞𝑗
𝑖𝑁𝑖

𝑗 =1   =1. When n customers n < 𝑁𝑖 are in the system, then j customers are served with 

probability, 𝑞𝑗
𝑖  for 1≤ j ≤ n-1 and n customers are served with probability 𝑞𝑗

𝑖𝑁𝑖
𝑗=𝑛   for   1 ≤ i ≤ k*.  

                                                   

(v) When the environment changes from i to j, the exponential service time parameter of single server changes 

from  𝜇𝑖  𝑡𝑜 𝜇𝑗  , the bulk service size 𝜓𝑖  changes to 𝜓𝑗  and the maximum service size 𝑁𝑖 changes to 𝑁𝑗 .                                                         

 

(vi) The maximum batch arrival size of all BMAPs’, M= ma𝑥1≤𝑖≤𝑘∗𝑀𝑖 is greater than the maximum service size 

N= ma𝑥1≤𝑖≤𝑘∗𝑁𝑖  

2.2.Analysis                                                                                                                                                                                    

There are three sub cases for this model namely (A1) M > N ≥ C, (A2) M ≥ C >N and (A3) C > M >N.  Sub 

Cases (A1) and (A2) admit Matrix Geometric solutions and they are treated in sub section (2.2.1). Modified 

Matrix Geometric solution is presented for Sub Case (A3) which is studied in sub section (2.2.2). The state of 

the system of the continuous time Markov chain X (t) under consideration is presented as follows.                                                                                                                                                                                                  

X (t) = {(n, m, i, j): for 0 ≤ m ≤ M-1; 1 ≤ i ≤ k*, 1 ≤ j ≤ 𝑘𝑖  and n ≥ 0}(1)                                                                                                                                                                                                                                                                                                                                                                            

The chain is in the state (n, m, i, j) when the number of customers in the system is n M + m, for 0 ≤ m ≤ M-1, 0 

≤ n < ∞,  the environment is i for 1 ≤ i ≤ k* and the arrival phase is j for 1 ≤  j ≤ 𝑘𝑖 . When the number of 
customers in the system is r, then r is identified with (n, m) where r on division by M gives n as the quotient and 

m as the remainder.   . Let the survivor probabilities of services 𝜓𝑖 be respectively for the environment state i for 

1 ≤ i ≤ k*. P(𝜓𝑖>m)= 𝑄𝑚
𝑖 =1- 𝑞𝑛

𝑖 𝑚
𝑛=1 , for 1 ≤ m ≤ 𝑁𝑖  -1                       (2)                                                                                                  

𝑄𝑚
𝑖 =0 for m  ≥ 𝑁𝑖 and  𝑄0

𝑖 = 1.                                                                                                                             (3)    


2.2.1 Sub Cases: (A1) M > N ≥ C and (A2) M ≥ C > N 

When M > N ≥ C or M ≥ C > N, the BMAP/M/C bulk queue admits matrix geometric solution as follows. The 

chain X (t) describing them, has the infinitesimal generator 𝑄𝐴,2.1 of infinite order which can be presented in 

block partitioned form given below. 

𝑄𝐴,2.1 = 

 
 
 
 
 
 
𝐵1 𝐴0 0 0 . . . ⋯
𝐴2 𝐴1 𝐴0 0 . . . ⋯
0 𝐴2 𝐴1 𝐴0 0 . . ⋯
0 0 𝐴2 𝐴1 𝐴0 0 . ⋯
0 0 0 𝐴2 𝐴1 𝐴0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                                 (4)                                                            

In (4) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type 1 x 

M  𝑘𝑖
𝑘∗
𝑖=1   and  𝑛 = ( (n, 0, 1, 1),(n, 0, 1,  2)…(n, 0, 1,  𝑘1), (n, 0, 2, 1),(n, 0, 2,  2)…(n, 0, 2,  𝑘2),…,(n, 0, k*, 

1),(n, 0, k*, 2)…(n, 0, k*, 𝑘𝑘∗ ), (n, 1, 1, 1),(n, 1, 1,  2)…(n, 1, 1,  𝑘1), (n, 1, 2, 1),(n, 1, 2,  2)…(n, 1, 2,  

𝑘2),…,(n, 1, k*, 1),(n, 1, k*, 2)…(n, 1, k*, 𝑘𝑘∗ ),…, (n, M-1, 1, 1),(n, M-1, 1,  2)…(n, M-1, 1,  𝑘1), (n, M-1, 2, 

1),(n, M-1, 2,  2)…(n, M-1, 2,  𝑘2),…,(n, M-1, k*, 1),(n, M-1, k*, 2)…(n, M-1, k*, 𝑘𝑘∗ ) ) for n ≥ 0.  The 

matrices 𝐵1𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of order M 𝑘𝑖
𝑘∗
𝑖=1  and their off diagonal elements 

are non- negative. The matrices 𝐴0 ,𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order M 𝑘𝑖
𝑘∗
𝑖=1  and they are 

given below.  

Let 𝒬𝑖
′ = 𝐷0

𝑖 + (−𝐶𝜇𝑖  +(𝑄1)𝑖 ,𝑖)𝐼𝑘𝑖
 for 1 ≤ i ≤ k*                                            (5)                                                                

where I indicates the identity matrix of order given in the suffix,  𝒬𝑖
′  is of order 𝑘𝑖 . Considering the change of 

environment switches on stationary version of BMAP arrival in the new environment, the following matrix Ω of 

order  𝑘𝑖
𝑘∗
𝑖=1  is defined which is concerned with change of environment during arrival time and service time. 

  Ω=

 
 
 
 
 
 

𝚀′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′𝑘∗  

 
 
 
 
 

                                                                                                                (6)                           

where 𝛺𝑖 ,𝑗  is a rectangular matrix of type  𝑘𝑖x 𝑘𝑗  whose all rows are equal to  (𝑄1)𝑖 ,𝑗  𝜑𝑗   for i ≠ j , 1 ≤ i, j ≤ k*. In 

the environment i, for 1 ≤ i ≤ k*,  the matrix of arrival rates of n customers corresponding to the arrival in 

BMAP is 𝐷𝑛
𝑖  which is a matrix with non-negative elements for 1 ≤ n ≤ 𝑀𝑖 and 𝐷𝑛

𝑖  = 0 matrix for n > 𝑀𝑖   (7)                                                                                                                                                                                                                                                                                                                                                                                                        

and the rate with which n customers are served by a single server for 1≤ n ≤ 𝑁𝑖 is given by                                    

𝑆𝑖 ,𝑛
′ =𝜇𝑖𝑞𝑛

𝑖  and 𝑆𝑖 ,𝑛
′ = 0 if n > 𝑁𝑖.                                                                     (8)                                                                                                                                                                                                                                                                                                                                                            
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Let 𝛬𝑛   = 

 
 
 
 
 
𝐷𝑛

1 0 0 ⋯ 0

0 𝐷𝑛
2 0 ⋯ 0

0 0 𝐷𝑛
3 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝐷𝑛

𝑘∗ 
 
 
 
 

 for 1 ≤ n ≤ M                                                (9)                                                              

In (9) 𝛬𝑛  is a square matrix of order  𝑘𝑖
𝑘∗
𝑖=1 ;  𝐷𝑛

𝑗
is a square matrix of order 𝑘𝑗  for 1 ≤ j ≤ k* and 0 appearing as 

(i,j) component of (9) is a block zero rectangular matrix of type 𝑘𝑖x 𝑘𝑗 .                                                                                   

Let 𝑈𝑛  =   

 
 
 
 
 
 
𝑆1,𝑛

′ 𝐼𝑘1
 0 0 ⋯ 0

0 𝑆2,𝑛
′ 𝐼𝑘2

 0 ⋯ 0

0 0 𝑆3,𝑛
′ 𝐼𝑘3

 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝑆𝑘∗,𝑛

′  𝐼𝑘𝑘∗ 
 
 
 
 
 

 for 1 ≤ n ≤ N                                                              (10)                                                                         

In (10) 𝑈𝑛  is a square matrix of order 𝑘𝑖
𝑘∗
𝑖=1 ;  𝑆𝑗 ,𝑛

′ 𝐼𝑘𝑗
 is a square matrix of order 𝑘𝑗  for 1 ≤ j ≤ k* and 0 

appearing as   (i, j) component of (10) is a block zero rectangular matrix of type 𝑘𝑖  x 𝑘𝑗 . The matrix 𝐴𝑖 for i = 0, 

1, 2 are as follows. 

                                                                 

𝐴0 =

 
 
 
 
 
 
 
 

𝛬𝑀 0 ⋯ 0 0 0
𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0
𝛬𝑀−2 𝛬𝑀−1 ⋯ 0 0 0
𝛬𝑀−3 𝛬𝑀−2 ⋱ 0 0 0

⋮ ⋮ ⋱ ⋱ ⋮ ⋮
𝛬3 𝛬4 ⋯ 𝛬𝑀 0 0
𝛬2 𝛬3 ⋯ 𝛬𝑀−1 𝛬𝑀 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 

 
 
 
 
 
 
 

                                                                                               (11) 

 

𝐴2 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈2 𝐶𝑈1

0 ⋯ 0 0 𝐶𝑈𝑁 ⋯ 𝐶𝑈3 𝐶𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 𝐶𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

    (12)

𝐴1 =

 
 
 
 
 
 
 
 
 
 

 Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 𝛬𝑀−𝑁 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝐶𝑈1  Ω 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1 ⋯ 𝛬𝑀−3 𝛬𝑀−2

𝐶𝑈2 𝐶𝑈1  Ω ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2 ⋯ 𝛬𝑀−4 𝛬𝑀−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 ⋯  Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−𝑁−2 𝛬𝑀−𝑁−1

0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈1  Ω 𝛬1 ⋯ 𝛬𝑀−𝑁−3 𝛬𝑀−𝑁−2

0 0 𝐶𝑈𝑁 ⋯ 𝐶𝑈2 𝐶𝑈1  Ω ⋯ 𝛬𝑀−𝑁−4 𝛬𝑀−𝑁−3

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 ⋯  Ω 𝛬1

0 0 0 ⋯ 0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈1  Ω  
 
 
 
 
 
 
 
 
 

                       (13) 

For defining the matrices 𝐵1 the following component matrices are required                                                                            

Using (2) and (3) let    𝑉′𝑖 ,𝑛 =   𝜇𝑖𝑄𝑛
𝑖  𝐼𝑘𝑖

  for 1 ≤ n ≤ N -1 which is a matrix of order 𝑘𝑖   for 1 ≤ i ≤ k*and let 

 𝑉𝑛  = 

 
 
 
 
𝑉′1,𝑛 0 0 ⋯ 0

0  𝑉′2,𝑛 0 ⋯ 0
⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯  𝑉′𝑘∗,𝑛  

 
 
 

  for 1 ≤ n ≤ N-1.                                                                                     (14)                                                                                                 

This is a matrix of order    𝑘𝑖
𝑘∗
𝑖=1   and 0 appearing in the (i, j) component is a 0 matrix of type 𝑘𝑖  x 𝑘𝑗  for 1 ≤ i, 

j ≤ k*.  

Let U =

 
 
 
 
𝜇1𝐼𝑘1

 0 0 ⋯ 0

0 𝜇2𝐼𝑘2
 0 ⋯ 0

⋮ ⋮ ⋮ ⋱ ⋮
0 0 0 ⋯ 𝜇𝑘∗𝐼𝑘1

  
 
 
 

                                                                                                        (15)                                                                                                                
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In (15), U is matrix of order    𝑘𝑖
𝑘∗
𝑖=1   and 0 appearing in the (i, j) component is a rectangular 0 matrix of type 

𝑘𝑖  x 𝑘𝑗  for 1 ≤ i, j ≤ k*.  To write 𝐵1 the block for 0 is to be considered which has queue length L= 0, 1, 2…M-1. 

When L = 0 there is only arrival process without service. The change in the environment from i to j switches on 

BMAP j version as per stationary (equilibrium) probability vector in the new environment j whenever it occurs 

for 1 ≤ i, j, ≤ k*. In the empty queue (L=0) when an arrival occurs in the environment i both the arrival time and 

the service time start. In block 0 when L =1, 2,…,M-1 all the processes  arrival, service and environment are 

active as in other blocks 𝑛 for n > 0. Considering the change of environment switches on BMAP arrival process 

in the new environment through the stationary (equilibrium) probability vector when the queue is empty, the 

following matrix Ω’ of order  𝑘𝑖
𝑘∗
𝑖=1 is defined which is concerned with the change of environment during 

arrival time and is similar to Ω defined in (6). 

  Ω’=

 
 
 
 
 
 

𝑇′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝑇′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝑇′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝑇′𝑘∗  

 
 
 
 
 

                                                                                                              (16)                                                                                                                 

Here 𝑇′𝑖= 𝐷0
𝑖 + 𝑑𝑖𝑎𝑔(𝑄1)𝑖 ,𝑖  and  𝛺𝑖 ,𝑗  is a rectangular matrix of type  𝑘𝑖  x 𝑘𝑗 whose all rows are equal to (𝑄1)𝑖 ,𝑗  

𝜑𝑗   presenting the rates of changing to phases in the new environment for i ≠ j and 1 ≤ i, j ≤ k*. 

The matrix  𝐵1  for Sub Case (A1) where N > C and Sub Case (A2) where C > N are given below in (17) and 

(18) respectively. For the case when C=N, the matrix𝐵1may be written by placing C in place of N in the N-th 

block row in (18) and there after the multiplier of 𝑈𝑗  is C. Let 𝒬1,𝑗
′ =  Ω’ − 𝑗𝑈 for 0 ≤ j ≤ C and  𝒬1,𝐶

′  =Ω 

 
For the case when M = C, the multiplier C does not appear as a multiplier for the 𝑈𝑗  matrices in the matrix 𝐵1 in 

(18) in the 0  block of (4) and C appears as a multiplier for all 𝑈𝑗  matrices in the matrices of 𝐴1 and 𝐴2 from row 

block 1   onwards. The basic generator of the bulk queue which is concerned with only the arrival and service is 

a matrix of order [ 𝑀 𝑘𝑖
𝑘∗
𝑖=1  ]   given below in (21) where 𝒬𝐴

′′ =𝐴0 + 𝐴1 + 𝐴2                       (19)                                                                                                                                                                                                                                                                                                                                                                                                                                

Its probability vector  w’ gives,  𝑤′𝒬𝐴
′′  =0 and w’. e = 1                                               (20)                                                                                                                 

It is well known that a square matrix in which each row (after the first) has the elements of the previous row 

shifted cyclically one place right, is called a circulant matrix. It is very interesting to note that the matrix 𝒬𝐴
′′    is 

a block circulant matrix where each block matrix is rotated one block to the right relative to the preceding block 

partition.   
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In (21), the first block-row of type [  𝑘𝑖

𝑘∗
𝑖=1  ]   x[ 𝑀 𝑘𝑖

𝑘∗
𝑖=1  ]   is, 𝑊 = (𝛺 + 𝛬𝑀 ,𝛬1, 𝛬2 , 

…, 𝛬𝑀−𝑁−2 ,  𝛬𝑀−𝑁−1,  𝛬𝑀−𝑁 + 𝐶𝑈𝑁 , …, 𝛬𝑀−2 + 𝐶𝑈2,  𝛬𝑀−1 + 𝐶𝑈1) which gives as the sum of the blocks 
 𝛺 + 𝛬𝑀 +  𝛬1+ 𝛬2 +…+𝛬𝑀−𝑁−2 +  𝛬𝑀−𝑁−1 + 𝛬𝑀−𝑁 + 𝐶𝑈𝑁+…+𝛬𝑀−2 + 𝐶𝑈2 +  𝛬𝑀−1 + 𝐶𝑈1= Ω’’ which is 

the matrix given by  

   Ω’’=

 
 
 
 
 
 
𝚀′′1 𝛺1,2 𝛺1,3 ⋯ 𝛺1,𝑘∗

𝛺2,1 𝚀′′2 𝛺2,3 ⋯ 𝛺2,𝑘∗

𝛺3,1 𝛺3,2 𝚀′′3 ⋯ 𝛺3,𝑘∗

⋮ ⋮ ⋮ ⋱ ⋮
𝛺𝑘∗,1 𝛺𝑘∗,2 𝛺𝑘∗,3 ⋯ 𝚀′′𝑘∗ 

 
 
 
 
 

                                                                                                         (22)              

where using (5) and (6), 𝑄’’𝑖  = 𝐷𝑖+ diag (𝑄1)𝑖 ,𝑖  for 1 ≤ i ≤ k*.  The stationary probability vector of the basic 

generator given in (21) is required to get the stability condition. Consider the vector                                                                           

w = (ϕ1𝜑1,ϕ2𝜑2 ,…, ϕ𝑘∗𝜑𝑘∗)                                                                         (23)                                                                                                                                            

where ϕ = (ϕ1 , ϕ2 ,… , ϕ𝑘∗) is the stationary probability vector of the environment, 𝜑𝑖 = ( 𝜑𝑖 ,𝑗 ) is the stationary 

probability vector of the arrival BMAP 𝐷𝑖  for 1 ≤ i ≤ k*. It may be noted 𝜙𝑖𝜑𝑖𝐷
𝑖=0. This gives 𝜙𝑖𝜑𝑖𝑄’’𝑖  = 

𝜙𝑖(𝑄1)𝑖 ,𝑖  𝜑𝑖    for 1 ≤ i ≤ k*. Now the first column of the matrix multiplication of wΩ’’ is 𝜙1 (𝑄1)1,1𝜑1,1 + 

𝜙2 (𝑄1)2,1𝜑11 [𝜑2𝑒] +.....+ 𝜙𝑘∗(𝑄1)𝑘∗,1𝜑11 [𝜑𝑘∗𝑒] = 0 since (𝜑𝑖)𝑒 = 1 and ϕ𝑄1=0. In a similar manner it can be 

seen that the first column block of the matrix multiplication of wΩ’’ is ϕ1(𝑄1)1,1𝜑1  + 

ϕ2 (𝑄1)2,1𝜑1 [(𝜑2 )𝑒] +.....+ ϕ𝑘∗ (𝑄1)𝑘∗,1𝜑1[(𝜑𝑘∗)𝑒] = 0 and i-th column block is 

ϕ1(𝑄1)1,𝑖𝜑𝑖[(𝜑1 )𝑒] +ϕ2 (𝑄1)2,𝑖𝜑𝑖[(𝜑2)𝑒] +.....+ϕ𝑖 (𝑄1)𝑖 ,𝑖𝜑𝑖+…+ϕ𝑘∗ (𝑄1)𝑘∗,𝑖𝜑𝑖[(𝜑𝑘∗)𝑒]= 0. This shows that 

𝑤 𝛺 + 𝛬𝑀 +  𝑤𝛬1+ 𝑤𝛬2 +…+𝑤𝛬𝑀−𝑁−2 +  𝑤𝛬𝑀−𝑁−1 + 𝑤𝛬𝑀−𝑁 + 𝑤𝐶𝑈𝑁+…+𝑤𝛬𝑀−2 + 𝑤𝐶𝑈2 +  𝑤𝛬𝑀−1 +
𝑤𝐶𝑈1= w Ω’’=0. So (w, w,…,w) .W= 0 = (w, w, ….w) W’ where W’ is the transpose W. This shows                             

(w, w...w) is the left eigen vector of  𝒬′𝐴
′  and the corresponding probability vector is                       

w’ =  
𝑤

𝑀
,
𝑤

𝑀
,
𝑤

𝑀
, … . . ,

𝑤

𝑀
                          (24)                                                                                                                                                    

where w is given by  (23). Neuts [5], gives the stability condition as, w′ 𝐴0  𝑒 < 𝑤′ 𝐴2 𝑒 where w’ is given by 

(24). Taking the sum cross diagonally in the  𝐴0  𝑎𝑛𝑑 𝐴2 matrices, it can be seen using (9), (10), (11) and (12) 

that                                                                                                

w’ 𝐴0  𝑒=
1

𝑀
 𝑤′  𝑛𝛬𝑛

𝑀
𝑛=1  𝑒=

1

𝑀
    𝑛𝑘∗

𝑖=1 𝜙𝑖(𝜑𝑖𝐷𝑛
𝑖 )e  𝑀

𝑛=1   = 
1

𝑀
( 𝜙𝑖  𝑛𝑀

𝑛=1
𝑘∗
𝑖=1 (𝜑𝑖𝐷𝑛

𝑖 )e   

=
1

𝑀
( 𝜙𝑖𝜑𝑖( 𝑛𝑀

𝑛=1
𝑘∗
𝑖=1 𝐷𝑛

𝑖 )e  <𝑤′𝐴2  𝑒=
1

𝑀
 𝑤  𝑛𝐶𝑈𝑛

𝑁
𝑛=1  𝑒=

𝐶

𝑀
    𝑛𝑘∗

𝑖=1 𝜙𝑖𝜑𝑖𝜇𝑖𝑞𝑛
𝑖 𝑒) 𝑁

𝑛=1    =
𝐶

𝑀
    𝜙𝑖𝜇𝑖   𝑛𝑁

𝑛=1 𝑞𝑛
𝑖 ) 𝑘∗

𝑖=1   =
𝐶

𝑀
(  𝜙𝑖𝜇𝑖

𝑘∗
𝑖=1 E(𝜓𝑖) . This gives the stability condition as 

  𝜙𝑖𝜑𝑖( 𝑛𝑀
𝑛=1

𝑘∗
𝑖=1 𝐷𝑛

𝑖 )e < C   𝜙𝑖𝜇𝑖
𝑘∗
𝑖=1 E (𝜓𝑖)                                                                                                  (25)                                                                                                                                                                                                                   

This is the stability condition for the BMAP/M/C bulk service queue with random environment for                                            

Sub Case (A1) M > N ≥ C and Sub Case (A2) M ≥ C > N. When (25) is satisfied, the stationary distribution 

exists as proved in Neuts [9].  Let π (n, m, i, j), for 0 ≤ m ≤ M-1,  1 ≤ i ≤ k*, 1 ≤ j ≤ 𝑘𝑖  and 0 ≤ n < ∞ be the 

stationary probability of the states in (1) and  𝜋𝑛be the vector of type 1xM 𝑘𝑖
𝑘∗
𝑖=1   with 𝜋𝑛=  (π(n, 0, 1, 1), π(n, 

0, 1, 2) … π(n, 0, 1, 𝑘1), π(n, 0, 2, 1), π(n, 0, 2, 2),…π(n, 0,2, 𝑘2)… π(n, 0, k*, 1), π(n, 0, k*, 2),…π(n, 0,k*, 

𝑘𝑘∗)…… π(n, M-1, 1, 1), π(n, M-1, 1, 2) … π(n, M-1, 1, 𝑘1), π(n, M-1, 2, 1), π(n, M-1, 2, 2),…π(n, M-1,2, 

𝑘2)… π(n, M-1, k*, 1), π(n, M-1, k*, 2),…π(n, M-1,k*, 𝑘𝑘∗ )for n ≥ 0. The stationary probability vector 𝜋 = 

(𝜋0 , 𝜋1 , 𝜋3 ,…… ) satisfies                                  𝜋𝑄𝐴,2.1=0 and 𝜋e=1.                                   (26)                                                                                                                                              

From (26), it can be seen 𝜋0𝐵1 + 𝜋1𝐴2=0.                             (27)                                                                                                                       

𝜋𝑛−1𝐴0+𝜋𝑛𝐴1+𝜋𝑛+1𝐴2 = 0, for n ≥ 1.                                    (28)                                                                                                                           
Introducing the rate matrix R as the minimal non-negative solution of the non-linear matrix equation                                              

𝐴0+R𝐴1+𝑅2𝐴2=0, (29)                                                                                                                                                                                                                                                                                                                                                           

it can be proved (Neuts [9]) that 𝜋𝑛   satisfies  𝜋𝑛  = 𝜋0 𝑅
𝑛     for n ≥ 1. (30)                                                                        

Using (27) and (30), 𝜋0 satisfies  𝜋0  [𝐵1 + 𝑅𝐴2] =0 (31)                                                                                                                                                                                                    

The vector  𝜋0 can be calculated up to multiplicative constant by (31). From (26) and (30)                                      
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𝜋0   𝐼 − 𝑅 −1𝑒=1. (32)                                                                                                                                                                                                                                                                                                                                                                                                          

Replacing the first column of the matrix multiplier of   𝜋0 in equation (31) by the column vector multiplier of 𝜋0 

in (32), a matrix which is invertible may be obtained. The first row of the inverse of that same matrix is 𝜋0 and 

this gives along with (30) all the stationary probabilities. The matrix R given in (29) is computed using 

recurrence relation    𝑅 0 = 0;  𝑅(𝑛 + 1) = −𝐴0𝐴1
−1 –𝑅2(𝑛)𝐴2𝐴1

−1 , n ≥ 0.                                           (33)                                                                                                               

The iteration may be terminated to get a solution of R at an approximate level where   𝑅 𝑛 + 1 − 𝑅(𝑛 )   < ε.                                                                                                                                                                                              

2.2.2 Sub Case: (A3) C > M > N  

 When C > M > N, the BMAP/M/C bulk queue admits a modified matrix geometric solution as follows. The 

chain X (t) describing this Sub Case (A3), can be defined as in (1) presented for Sub Cases (A1) and (A2). It has 

the infinitesimal generator 𝑄𝐴,2.2 of infinite order which can be presented in block partitioned form given below.                                  

When C > M, let C = m* M + n* where m* is positive integer and n* is nonnegative integer with 0 ≤ n* ≤ M-1. 

𝑄𝐴,2.2=

 
 
 
 
 
 
 
 
 
 
𝐵′1 𝐴0 0 0 0 ⋯ 0 0 0 0 ⋯
𝐴2,1 𝐴1,1 𝐴0 0 0 ⋯ 0 0 0 0 ⋯

0 𝐴2,2 𝐴1,2 𝐴0 0 ⋯ 0 0 0 0 ⋯

0 0 𝐴2,3 𝐴1,3 𝐴0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴2,𝑚∗ 𝐴1,𝑚∗ 𝐴0 0 ⋯

0 0 0 0 0 ⋯ 0 𝐴2 𝐴1 𝐴0 ⋯
0 0 0 0 0 ⋯ 0 0 𝐴2 𝐴1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮ ⋱  

 
 
 
 
 
 
 
 
 

                                                       (34)                                                                                        

 In (34) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type                        

1xM 𝑘𝑖
𝑘∗
𝑖=1 and  𝑛 = ( (n, 0, 1, 1),(n, 0, 1,  2)…(n, 0, 1,  𝑘1), (n, 0, 2, 1),(n, 0, 2,  2)…(n, 0, 2,  𝑘2),…,(n, 0, k*, 

1),(n, 0, k*, 2)…(n, 0, k*, 𝑘𝑘∗ ), (n, 1, 1, 1),(n, 1, 1,  2)…(n, 1, 1,  𝑘1), (n, 1, 2, 1),(n, 1, 2,  2)…(n, 1, 2,  

𝑘2),…,(n, 1, k*, 1),(n, 1, k*, 2)…(n, 1, k*, 𝑘𝑘∗ ),…, (n, M-1, 1, 1),(n, M-1, 1,  2)…(n, M-1, 1,  𝑘1), (n, M-1, 2, 

1),(n, M-1, 2,  2)…(n, M-1, 2,  𝑘2),…,(n, M-1, k*, 1),(n, M-1, k*, 2)…(n, M-1, k*, 𝑘𝑘∗ ) ) for n ≥ 0.The matrices 

𝐵′1 ,𝐴1,𝑗  for 1 ≤  j <  𝑚 ∗ 𝑎𝑛𝑑 𝐴1 have negative diagonal elements, they are of order M 𝑘𝑖
𝑘∗
𝑖=1 and their off 

diagonal elements are non- negative. The matrices 𝐴0  𝑎𝑛𝑑𝐴2 have nonnegative elements and are of order 

M 𝑘𝑖
𝑘∗
𝑖=1  and the matrices 𝐴0 ,𝐴1𝑎𝑛𝑑 𝐴2 are same as defined earlier for Sub Cases (A1) and (A2) in equations 

(11), (12) and (13). Since C > M the number of servers in the system s equals the number of customers in the 

system L up to customer length becomes C. Once number of customers becomes L ≥ C, the number of servers in 

the system remains C. When the number of customers becomes less than C, the number of servers reduces and 

equals the number of customers. The matrix  𝐴2,𝑗  for 1 ≤ j < m*-1 is given below. 

 𝐴2,𝑗 =

 
 
 
 
 
 
 
 
0 ⋯ 0 𝑗𝑀𝑈𝑁 𝑗𝑀𝑈𝑁−1 ⋯ 𝑗𝑀𝑈2 𝑗𝑀𝑈1

0 ⋯ 0 0 (𝑗𝑀 + 1)𝑈𝑁 ⋯ (𝑗𝑀 + 1)𝑈3 (𝑗𝑀 + 1)𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ (𝑗𝑀 + 𝑁 − 2)𝑈𝑁 (𝑗𝑀 + 𝑁 − 2)𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 (𝑗𝑀 + 𝑁 − 1)𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 0  

 
 
 
 
 
 
 

                        (35)

The matrix 𝐴2,𝑚∗ is as follows given in (36) when C = m*M + n* and n* is such that 0 ≤ n* ≤ N-1. Here the 

multiplier of 𝑈𝑗  in the row block increases by one till the multiplier becomes C = m*M + n* and there after the 

multiplier is C for 𝑈𝑗 for all blocks.   When N ≤   n* ≤ M-1,  𝐴2,𝑚∗ is same as in (35) for j = m*  

𝐴2,𝑚∗ =

 
 
 
 
 
 
 
 
 
 
0 ⋯ 0 (𝑀𝑚 ∗)𝑈𝑁 (𝑀𝑚 ∗)𝑈𝑁−1 ⋯ . ⋯ (𝑀𝑚 ∗)𝑈2 (𝑀𝑚 ∗)𝑈1

0 ⋯ 0 0 (𝑀𝑚 ∗ +1)𝑈𝑁 ⋯ . ⋯ (𝑀𝑚 ∗ +1)𝑈3 (𝑀𝑚 ∗ +1)𝑈2

⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 𝐶𝑈𝑁 ⋯ 𝐶𝑈𝑛∗+2 𝐶𝑈𝑛∗+1

⋮ ⋮ ⋮ ⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 𝐶𝑈𝑁

0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ ⋮
0 ⋯ 0 0 0 ⋯ 0 ⋯ 0 0  

 
 
 
 
 
 
 
 
 

         (36)                                             



BMAP/M/C Bulk Service Queue with Randomly Varying Environment 

International organization of Scientific Research                                                                               40 | P a g e  

 
The matrix 𝐴1,𝑚∗ is as follows when C = m*M + n* and n* is such that 0 ≤ n* ≤ N-1. The multiplier of 𝑈𝑗  

increases by one till it becomes C = m*M + n* and thereafter in all the blocks the multiplier of 𝑈𝑗  is C.  

  
 

When n* = N or n* > N then, in the matrix  𝐴1,𝑚∗ , there is slight change in the elements. When n* = N, in the 

N+1 block row and thereafter C appears as multiplier of 𝑈𝑗 , and when n* > N with n* = N + r for 1 ≤ r ≤ M-N-1,  

in the n*+1 block row 𝑈𝑁   appears in the r + 1 column block. C appears as multiplier for it and as the multiplier 

of 𝑈𝑗  thereafter in all row blocks respectively. The basic system generator for this Sub Case is same as (21) with 

probability vector as given in (24). The stability condition is as presented in (25). Once the stability condition is 

satisfied the stationary probability vector exists by Neuts [9]. As in the previous Sub Cases,                        

𝜋𝑄𝐴,2.2=0 and   𝜋e=1.                 (40)                                                                                                                                                                                                                                                                                                              

The following may be noted. 𝜋𝑛𝐴0+𝜋𝑛+1𝐴1+𝜋𝑛+2𝐴2 = 0, for n ≥ m*, the rate matrix R is same as in previous 

Sub Cases with same iterative method for solving the same and  𝜋𝑛   satisfies 𝜋𝑛  = 𝜋𝑚∗ 𝑅
𝑛−𝑚∗ for n ≥ m*.   (41)                                 

The set of equations available from (40) are   𝜋0𝐵′1+𝜋1𝐴2,1= 0, (42)                                                                                          

𝜋𝑖𝐴0+𝜋𝑖+1𝐴1,𝑖+1+𝜋𝑖+2𝐴2,𝑖+2 = 0, for 0 ≤ i ≤ m*-2 (43)                                                                                                                                          

and  𝜋𝑚∗−1𝐴0+𝜋𝑚∗𝐴1,𝑚∗+𝜋𝑚∗+1𝐴2 = 0. (44)                                                                                                                                                                                       

The equation 𝜋e=1 in (40) gives  𝜋𝑖𝑒
𝑚∗−1
𝑖=0  + 𝜋𝑚∗(I-R)−1e = 1 (45)                                                                                                                         

Using 𝜋𝑚∗+1 =𝜋𝑚∗𝑅  and equations (42), (43), (44) and (45) the following matrix equations can be seen where  

𝑄′𝐴,2.2 is given by (48). 

 (𝜋0 , 𝜋1 , 𝜋3 , ……𝜋𝑚∗)𝑄′𝐴,2.2=0 (46)                                                                                                                                                 

(𝜋0 , 𝜋1 , 𝜋3 ,……𝜋𝑚∗)  
𝑒

(𝐼 − 𝑅)−1𝑒 =1                                                                                                                 (47)                                                                                                                                    
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 𝑄′𝐴,2.2=

 
 
 
 
 
 
 
𝐵′1 𝐴0 0 0 0 ⋯ 0 0
𝐴2,1 𝐴1,1 𝐴0 0 0 ⋯ 0 0

0 𝐴2,2 𝐴1,2 𝐴0 0 ⋯ 0 0

0 0 𝐴2,3 𝐴1,3 𝐴0 ⋯ 0 0
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴2,𝑚∗ 𝑅𝐴2 + 𝐴1,𝑚∗ 

 
 
 
 
 
 

                                                               (48)                                                                              

Equations (46) and (47) may be used for finding (𝜋0 ,𝜋1 , 𝜋3 , ……𝜋𝑚∗). Replacing the first column of the first 
column- block in the matrix given by (48) by the column vector multiplier in (47) a matrix which is invertible 

can be obtained. The first row of the inverse matrix gives (𝜋0 , 𝜋1 , 𝜋3 , ……𝜋𝑚∗).This together with equation (41) 

give all the probability vectors for this Sub Case. 

 2.3. Performance Measures    
(1) The probability P(L = r), of the queue length L = r, can be seen as follows. Let n ≥ 0 and j for 0 ≤ m ≤ M-1 

be non-negative integers such that r = n M + m. Then it is noted that                                                                                                            

P (L=r) =  𝜋
𝑘𝑖
𝑗=1

𝑘∗
𝑖=1

 
 𝑛, 𝑚, 𝑖, 𝑗  , where r = M n + m.   

(2) P (Queue length is 0) = P (L=0) =   𝜋
𝑘𝑖
𝑗=1

𝑘∗
𝑖=1

 
 0, 0, 𝑖, 𝑗  .                            

(3)The expected queue level E(L), can be calculated as follows.                                                                                         

For Sub Cases (A1) and (A2) it may be seen as follows. Since π  𝑛, 𝑚, 𝑖, 𝑗   = P [L = M n + m, and environment 

state = i, arrival BMAP phase=j], for n ≥ 0,  0 ≤ m ≤ M-1, 1 ≤ j ≤ 𝑘𝑖   and 1 ≤ i ≤ k*,                                                                                     

E(L) =     𝜋
𝑘𝑖
𝑗=1

 𝑛, 𝑚, 𝑖, 𝑗  𝑘∗
𝑖=1   𝑀𝑛 + 𝑚 𝑀−1 

𝑚=0
∞
𝑛=0   = 𝜋𝑛

∞
𝑛=0 . (Mn… Mn, Mn+1… Mn+1, Mn+2…Mn+2… 

Mn+M-1… Mn+M-1) where in the multiplier vector Mn appears  𝑘𝑖
𝑘∗
𝑖=1  times; Mn+1 appears  𝑘𝑖

𝑘∗
𝑖=1  times; 

and so on and finally Mn+M-1appears  𝑘𝑖
𝑘∗
𝑖=1  times.    So E(L) =M 𝑛𝜋𝑛

∞
𝑛=0 𝑒 +𝜋0( 𝐼 − 𝑅)−1𝜉 . Here ξ is a 

(M 𝑘𝑖
𝑘∗
𝑖=1  ) x1 type column vector ξ= 0, … 0,1, … ,1,2, … ,2, … , 𝑀 − 1, … , 𝑀 − 1 ′ where 0,1, 2,…M-1 appear   

 𝑘𝑖
𝑘∗
𝑖=1  times in order.This gives E (L) =    𝜋0( 𝐼 − 𝑅)−1𝜉 + 𝑀𝜋0(𝐼 − 𝑅 )−2𝑅𝑒 . (49)                                                                                             

For Sub Case (A3), E(L) =     𝜋
𝑘𝑖
𝑗 =1

 𝑛, 𝑚, 𝑖, 𝑗  𝑘∗
𝑖=1   𝑀𝑛 + 𝑚 𝑀−1 

𝑚=0
∞
𝑛=0   =   M 𝑛𝜋𝑛

∞
𝑛=0 𝑒 +  𝜋𝑛

∞
𝑛=0 𝜉 =  

M 𝑛𝜋𝑛
∞
𝑛=0 𝑒+ 𝜋𝑖

𝑚∗−1
𝑖=0 ξ + 𝜋𝑚∗(I-R)−1ξ. Letting the generating function of probability vector Φ(s) =  𝜋𝑖𝑠

𝑖∞
𝑖=0 , 

it can be seen, Φ(s) =  𝜋𝑖𝑠
𝑖𝑚∗−1

𝑖=0  +𝜋𝑚∗ 𝑠
𝑚∗(I-Rs)−1  and  𝑛𝜋𝑛

∞
𝑛=0 𝑒 = Φ’(1)e =  𝑖𝜋𝑖

𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  

+ 𝜋𝑚∗(I-R)−2Re. Using this, it is noted that                                                                                                                                                       

E(L) = M [ 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝑒 + 𝜋𝑚∗m*(I-R)−1e  + 𝜋𝑚∗(I-R)−2 Re] + 𝜋𝑖

𝑚∗−1
𝑖=0 ξ + 𝜋𝑚∗(I-R)−1ξ                                (50)   

                                                                                                                                                                                                                                                                                                                                                                                                                                              

(4) Variance of queue level can be seen using Var (L) = E (𝐿2) – E(L)2 . Let η be column vector 

η=[0, . .0, 12 , … 12  22 , . . 22 , …  𝑀 − 1)2 , …  (𝑀 − 1)2 ′  of type (M 𝑘𝑖
𝑘∗
𝑖=1  ) x1 where 0,1, 2,…M-1 appear   

 𝑘𝑖
𝑘∗
𝑖=1  times in order. Then it can be seen that the second moment, for Sub Cases (A1) and (A2)                                                                         

E (𝐿2) =      𝜋
𝑘𝑖
𝑗=1

 𝑛, 𝑚, 𝑖, 𝑗  𝑘∗
𝑖=1  [𝑀𝑛 + 𝑚𝑀−1 

𝑚=0
∞
𝑛=0 ]2   =𝑀2  𝑛 𝑛 − 1 𝜋𝑛

∞
𝑛=1 𝑒 +  𝑛𝜋𝑛

∞
𝑛=0 𝑒 +

 𝜋𝑛𝜂∞
𝑛=0  + 2M  𝑛 𝜋𝑛

∞
𝑛=0 𝜉.                                                                                                                                                                         

So, E(𝐿2)=𝑀2[𝜋0(𝐼 − 𝑅)−32𝑅2  𝑒 + 𝜋0(𝐼 − 𝑅)−2𝑅𝑒]+𝜋0(𝐼 − 𝑅)−1𝜂 + 2M 𝜋0(𝐼 − 𝑅)−2𝑅𝜉  (51)                                    
Using (49) and (51) the variance can be written for Sub Cases (A1) and (A2).                                                                                

For the Sub Case (A3) the second moment can be seen as follows.  

 E (𝐿2) =      𝜋
𝑘𝑖
𝑗=1

 𝑛, 𝑚, 𝑖, 𝑗  𝑘∗
𝑖=1  [𝑀𝑛 + 𝑚𝑀−1 

𝑚=0
∞
𝑛=0 ]2   = 𝑀2  𝑛 𝑛 − 1 𝜋𝑛

∞
𝑛=1 𝑒 +  𝑛𝜋𝑛

∞
𝑛=0 𝑒 +

 𝜋𝑛𝜂∞
𝑛=0  + 2M  𝑛 𝜋𝑛

∞
𝑛=0 𝜉 = 𝑀2[Φ’’(1)e + 𝑖𝜋𝑖

𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  + 𝜋𝑚∗(I-R)−2 Re] +  𝜋𝑖

𝑚∗−1
𝑖=0 η + 

𝜋𝑚∗(I-R)−1η +              2M [   𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝜉+𝜋𝑚∗m*(I-R)−1ξ  +   𝜋𝑚∗(I-R)−2 R ξ]. This gives                                                                                             

E (𝐿2) =  𝑀2[  𝑖 𝑖 − 1 𝜋𝑖
𝑚∗−1
𝑖=1 𝑒  + m*(m*-1)𝜋𝑚∗ (𝐼 − 𝑅)−1𝑒  +2m*𝜋𝑚∗ (I-R)−2Re +2𝜋𝑚∗(I-R)−3 𝑅2 e 

+ 𝑖𝜋𝑖
𝑚∗−1
𝑖=0 𝑒+𝜋𝑚∗m*(I-R)−1e  +  𝜋𝑚∗(I-R)−2 Re] +  𝜋𝑖

𝑚∗−1
𝑖=0 η + 𝜋𝑚∗(I-R)−1η +2M [   𝑖𝜋𝑖

𝑚∗−1
𝑖=0 𝜉+𝜋𝑚∗m*(I-

R)−1ξ  + 𝜋𝑚∗(I-R)−2 R ξ].                                               (52)                                                                                                                                                             
(52)  Using (50) and (52) the variance can be written for Sub Case

 

III. MODEL (B). MAXIMUM ARRIVAL SIZE M LESS THAN  

MAXIMUM SERVICE SIZE N 
  In this Model (B) the dual case of Model (A), namely the case, M < N is treated. Here the partitioning 

matrices are of order N 𝑘𝑖
𝑘∗
𝑖=1  and the customers are considered as members of N blocks. M plays no role in the 

partition where as it played the major role in Model (A).  Two Sub Cases namely (B1) N ≥ C and (B2) C > N 

come up in the Model (B). (When M =N and for various values of C greater than them, or less than them or 

equal to them, both Models (A) and (B) are applicable and one can use any one of them.) The assumption (vi) of 

Model (A) is modified without changing others.      
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3.1Assumption.                                                                                                                                                                 

(vi) The maximum batch arrival size of all BMAPs’, M= ma𝑥1≤𝑖≤𝑘∗𝑀𝑖 is greater than the maximum service size                                           

N=ma𝑥1≤𝑖≤𝑘∗𝑁𝑖.                                                                                                                                                                            

3.2.Analysis                                                                                                                                                                              

Since this model is dual, the analysis is similar to that of Model (A). The differences are noted below. The state 

space of the chain is as follows defined in a similar way presented for Model (A).                                                                                                                                                  

X (t) = {(n, m, i, j): for 0 ≤ m ≤ N-1, for 1 ≤ i ≤ k*, for 1 ≤ j ≤ 𝑘𝑖  and 0 ≤ n < ∞}. (53)                                                                                                                                                                                                                            
The chain is in the state (n, m, i, j) when the number of customers in the queue is, n N + m, the environment 

state is i and the BMAP arrival phase is j for 0 ≤ m ≤ N-1, for 1 ≤ i ≤ k*,for 1 ≤ j ≤ 𝑘𝑖  and 0 ≤ n < ∞. When the 

customers in the system is r then r is identified with (n, m) where r on division by N gives n as the quotient and 

m as the remainder.                                                                                               

3.2.1 Sub Case: (B1) N ≥ C  

 The infinitesimal generator 𝑄𝐵 ,3.1 of the Sub Case (B1) of Model (B) has the same block partitioned structure 

given in (4) for the Sub Cases (A1) and (A2) of Model (A) but the inner matrices are of different orders and 

elements. 

𝑄𝐵,3.1=

 
 
 
 
 
 
𝐵"1 𝐴"0 0 0 . . . ⋯
𝐴"2 𝐴"1 𝐴"0 0 . . . ⋯

0 𝐴"2 𝐴"1 𝐴"0 0 . . ⋯
0 0 𝐴"2 𝐴"1 𝐴"0 0 . ⋯
0 0 0 𝐴"2 𝐴"1 𝐴"0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋱ ⋱ ⋱ 

 
 
 
 
 

                                                                                          (54)                                                           

In (54) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type                  

1 x N  𝑘𝑖
𝑘∗
𝑖=1   and  𝑛 = ( (n, 0, 1, 1),(n, 0, 1,  2)…(n, 0, 1,  𝑘1), (n, 0, 2, 1),(n, 0, 2,  2)…(n, 0, 2,  𝑘2),…,(n, 0, k*, 

1),(n, 0, k*, 2)…(n, 0, k*, 𝑘𝑘∗ ), (n, 1, 1, 1),(n, 1, 1,  2)…(n, 1, 1,  𝑘1), (n, 1, 2, 1),(n, 1, 2,  2)…(n, 1, 2,  

𝑘2),…,(n, 1, k*, 1),(n, 1, k*, 2)…(n, 1, k*, 𝑘𝑘∗ ),…, (n, N-1, 1, 1),(n, N-1, 1,  2)…(n, N-1, 1,  𝑘1), (n, N-1, 2, 

1),(n, N-1, 2,  2)…(n, N-1, 2, 𝑘2),…,(n, N-1, k*, 1),(n, N-1, k*, 2)…(n, N-1, k*, 𝑘𝑘∗) ) for n ≥ 0.  

The matrices, 𝐵′′1,  𝐴′′0  , 𝐴′′1  𝑎𝑛𝑑 𝐴′′2 are all of order N  𝑘𝑖
𝑘∗
𝑖=1 . The matrices  𝐵′′1  𝑎𝑛𝑑 𝐴′′1 have negative 

diagonal elements and their off diagonal elements are non- negative. The matrices 𝐴′′0 𝑎𝑛𝑑 𝐴′′2 have 

nonnegative elements. They are all given below. Using the same matrices presented in model (A), for Ω, 

 𝛬𝑗 ,   𝑈𝑗 , 𝑉𝑗  , U, Ω’ and  𝒬1,𝑗
′   in (6), (9), (10), (14) to (17) the partitioning matrices are defined below. 

𝐴′′ 0 =

 
 
 
 
 
 
 
 

0 0 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 0 0 ⋯ 0
𝛬𝑀 0 ⋯ 0 0 0 ⋯ 0

𝛬𝑀−1 𝛬𝑀 ⋯ 0 0 0 ⋯ 0
⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
𝛬2 𝛬3 ⋯ 𝛬𝑀 0 0 ⋯ 0
𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 

 
 
 
 
 
 
 

                         (55)                                                              

𝐴′′2

 
 
 
 
 
 
 
 
𝐶𝑈𝑁 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 ⋯ 𝐶𝑈2 𝐶𝑈1

0 𝐶𝑈𝑁 𝐶𝑈𝑁−1 ⋯ 𝐶𝑈3 𝐶𝑈2

0 0 𝐶𝑈𝑁 ⋯ 𝐶𝑈4 𝐶𝑈3

0 0 0 ⋱ 𝐶𝑈5 𝐶𝑈4

⋮ ⋮ ⋮ ⋱ ⋮ ⋮
0 0 0 ⋯ 𝐶𝑈𝑁−1 𝐶𝑈𝑁−2

0 0 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 0 0 ⋯ 0 𝐶𝑈𝑁  
 
 
 
 
 
 
 

    (56)

𝐴′′1 =

 
 
 
 
 
 
 
 
 
 

Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0
𝐶𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0
𝐶𝑈2 𝐶𝑈1 Ω ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮

𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 ⋯ Ω 𝛬1 𝛬2 ⋯ 𝛬𝑀−1 𝛬𝑀

𝐶𝑈𝑁−𝑀 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 ⋯ 𝐶𝑈1 Ω 𝛬1 ⋯ 𝛬𝑀−2 𝛬𝑀−1

𝐶𝑈𝑁−𝑀+1 𝐶𝑈𝑁−𝑀 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈2 𝐶𝑈1 Ω ⋯ 𝛬𝑀−3 𝛬𝑀−2

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 𝐶𝑈𝑁−4 ⋯ 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 𝐶𝑈𝑁−𝑀−2 ⋯ Ω 𝛬1

𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 ⋯ 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈1 Ω  
 
 
 
 
 
 
 
 
 

(57)                                                                                                                                                                                                                             
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In (58) the case N > C has been presented. When C=N,  𝑉𝑗   and 𝑈𝑗  in 𝐵′′1 do not get C as multiplier in (58) and 

C appears as a multiplier of  𝑈 𝑗  in 𝐴′′2  and 𝐴′′1 in (56) and (57). The multiplier of matrices 𝑈𝑗  𝑎𝑛𝑑 𝑉𝑗   

concerning the services increases by one in each row block from third row block as the row number increases by 

one, up to the row C+1  and it remains C in row blocks after that as given above. 

 
 

The basic generator (59) which is concerned with only the arrival and service is 𝒬𝐵
′′ =  𝐴′′0 +  𝐴′′1 + 𝐴′′2. This 

is also block circulant. Using similar arguments given for Model (A) it can be seen that its probability vector is 

w’=  
𝑤

𝑁
,
𝑤

𝑁
,
𝑤

𝑁
, … . . ,

𝑤

𝑁
    where w is as seen in Model (A), where w= (ϕ1𝜑1, ϕ2𝜑2 , …, ϕ𝑘∗𝜑𝑘∗) and the stability 

condition remains the same as in Model (A). Following the arguments given for Sub Cases (A1) and (A2) of 

Model (A), one can find the stationary probability vector for Sub Case (B1) of Model (B) also in matrix 

geometric form. All performance measures in section 2.3 including the expectation of customers waiting for 

service and its variance for Sub Cases (A1) and (A2) of Model (A) are valid for Sub Case (B1) of  Model (B) 

with M is replaced by N. It can also be seen that when N = C the system admits Matrix Geometric solution as in 

Model (A). 

 3.2.2Sub Case: (B2) C > N                                                                 

The infinitesimal generator 𝑄𝐵,3.2 of the Sub Case (B2) of Model (B) has the same block partitioned structure 

given in (34) for Sub Case (A3) of Model (A) but the inner matrices are of different orders and elements. When 

C > N > M, the BMAP/M/C bulk queue admits a modified matrix geometric solution as follows. The chain X (t) 

describing this Sub Case (B2), can be defined as in the Sub Case (B1). It has the infinitesimal generator 𝑄𝐵,3.2 of 

infinite order which can be presented in block partitioned form given below. When C > N, let C = m* N + n* 

where m* is positive integer and n* is nonnegative integer with 0 ≤ n* ≤ N-1. 

𝑄𝐵,3.2=

 
 
 
 
 
 
 
 
 
 
𝐵′′′1 𝐴′′0 0 0 0 ⋯ 0 0 0 0 ⋯

𝐴′′2,1 𝐴′′1,1 𝐴′′0 0 0 ⋯ 0 0 0 0 ⋯

0 𝐴′′2,2 𝐴′′1,2 𝐴′′0 0 ⋯ 0 0 0 0 ⋯

0 0 𝐴′′2,3 𝐴′′1,3 𝐴′′0 ⋯ 0 0 0 0 ⋯
⋮ ⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮ ⋮
0 0 0 0 0 ⋯ 𝐴′′2,𝑚∗ 𝐴′′1,𝑚∗ 𝐴′′0 0 ⋯

0 0 0 0 0 ⋯ 0 𝐴′′2 𝐴′′1 𝐴′′0 ⋯

0 0 0 0 0 ⋯ 0 0 𝐴′′2 𝐴′′1 ⋯
⋮ ⋮ ⋮ ⋮ ⋱ ⋮ ⋱ ⋱ ⋱ ⋮ ⋱ 

 
 
 
 
 
 
 
 
 

                                     (60)                                                                                                                                  

 In (60) the states of the matrices are listed lexicographically as  0, 1, 2, 3, … . 𝑛, …. Here  the vector 𝑛 is of type                  

1 x N  𝑘𝑖
𝑘∗
𝑖=1   and  𝑛 = ( (n, 0, 1, 1),(n, 0, 1,  2)…(n, 0, 1,  𝑘1), (n, 0, 2, 1),(n, 0, 2,  2)…(n, 0, 2,  𝑘2),…,(n, 0, k*, 

1),(n, 0, k*, 2)…(n, 0, k*, 𝑘𝑘∗ ), (n, 1, 1, 1),(n, 1, 1,  2)…(n, 1, 1,  𝑘1), (n, 1, 2, 1),(n, 1, 2,  2)…(n, 1, 2,  
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𝑘2),…,(n, 1, k*, 1),(n, 1, k*, 2)…(n, 1, k*, 𝑘𝑘∗ ),…, (n, N-1, 1, 1),(n, N-1, 1,  2)…(n, N-1, 1,  𝑘1), (n, N-1, 2, 

1),(n, N-1, 2,  2)…(n, N-1, 2, 𝑘2),…,(n, N-1, k*, 1),(n, N-1, k*, 2)…(n, N-1, k*, 𝑘𝑘∗) ) for n ≥ 0.  

The matrices 𝐵′′′1 , 𝐴′′1𝑗   for 1 ≤ j ≤ m* and  𝐴′′1   have negative diagonal elements, they are of order N  𝑘𝑖
𝑘∗
𝑖=1  

and their off diagonal elements are non- negative. The matrices 𝐴′′0 , 𝐴′′2,𝑗  𝑎𝑛𝑑 𝐴′′2  for 1 ≤ j ≤ m* have 

nonnegative elements and are of order N  𝑘𝑖
𝑘∗
𝑖=1  and the matrices 𝐴′′0, 𝐴′′1𝑎𝑛𝑑 𝐴′′2 are same as defined earlier 

for Sub Case (B1) in equations (55), (56) and (57). Since C > N the number of servers in the system s equals the 

number of customers in the system L up to customer length becomes C= m* N + n*. Once number of customers 

L ≥ C, the number of servers in the system remains C. When the number of customers becomes less than C, the 

number of servers again falls and equals the number of customers. Using the same matrices presented in model 

(A), for Ω,  𝛬𝑗 ,   𝑈𝑗 , 𝑉𝑗   U, Ω’ and  𝒬1,𝑗
′   in (6), (9), (10), (14) to (17) the partitioning matrices are defined below. 

 The matrix 𝐴′′2,𝑗  is given for 1 ≤ j < m*-1, as 

𝐴′′2,𝑗 =

 
 
 
 
 
𝑗𝑁𝑈𝑁 𝑗𝑁𝑈𝑁−1 ⋯ 𝑗𝑁𝑈2 𝑗𝑁𝑈1

0 (𝑗𝑁 + 1)𝑈𝑁 ⋯ (𝑗𝑁 + 1)𝑈3 (𝑗𝑁 + 1)𝑈2

⋮ ⋮ ⋱ ⋮ ⋮
0 0 ⋯ (𝑗𝑁 + 𝑁 − 2)𝑈𝑁 (𝑗𝑁 + 𝑁 − 2)𝑈𝑁−1

0 0 ⋯ 0 (𝑗𝑁 + 𝑁 − 1)𝑈𝑁  
 
 
 
 

  (61)

The matrix 𝐴2,𝑚∗ is as follows given in (62) when C = m*N + n* where 0 ≤ n* ≤ N-1. 

𝐴′′2,𝑚∗ =

 
 
 
 
 
 
 
(𝑁𝑚 ∗)𝑈𝑁 (𝑁𝑚 ∗)𝑈𝑁−1 ⋯ . ⋯ (𝑁𝑚 ∗)𝑈2 (𝑁𝑚 ∗)𝑈1

0 (𝑁𝑚 ∗ +1)𝑈𝑁 ⋯ . ⋯ (𝑁𝑚 ∗ +1)𝑈3 (𝑁𝑚 ∗ +1)𝑈2

⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 𝐶𝑈𝑁 ⋯ 𝐶𝑈𝑛∗+2 𝐶𝑈𝑛∗+1

⋮ ⋮ ⋯ ⋮ ⋮ ⋮ ⋮
0 0 ⋯ 0 ⋯ 𝐶𝑈𝑁 𝐶𝑈𝑁−1

0 0 ⋯ 0 ⋯ 0 𝐶𝑈𝑁  
 
 
 
 
 
 

                              (62)                                        

Let 𝒬1,𝑗
′ =  Ω’ − 𝑗𝑈 for 0 ≤ j ≤ C and  𝒬1,𝐶

′  =Ω  as in Sub Cases (A1) and(A2). Then 𝐵′′′1 ,  is defined as follows. 

 
 

The matrix 𝐴′′1,𝑚∗ is in (65) when C = m*N + n* and 0 ≤ n* ≤ N-1. From row block n*+1, the multiplier of 𝑈𝑗  

is C.  

 

𝐴′′1,𝑚∗ =

 
 
 
 
 
 
 
 
 
 

𝒬1,𝑁𝑚∗
′ 𝛬1 𝛬2 ⋯ 𝛬𝑀 0 0 ⋯ 0 0

(𝑁𝑚 ∗ +1)𝑈1 𝒬1,𝑁𝑚∗+1
′ 𝛬1 ⋯ 𝛬𝑀−1 𝛬𝑀 0 ⋯ 0 0

(𝑁𝑚 ∗ +2)𝑈2 (𝑁𝑚 ∗ +2)𝑈1 𝒬1,𝑁𝑚∗+2
′ ⋯ 𝛬𝑀−2 𝛬𝑀−1 𝛬𝑀 ⋯ 0 0

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑛∗ 𝐶𝑈𝑛∗−1 𝐶𝑈𝑛∗−2 ⋯ 𝒬1,𝐶

′ 𝛬1 𝛬2 ⋯ . .

𝐶𝑈𝑛∗+1 𝐶𝑈𝑛∗ 𝐶𝑈𝑛∗−1 ⋯ 𝐶𝑈1 𝒬1𝐶
′ 𝛬1 ⋯ . .

⋮ ⋮ ⋮ ⋱ ⋮ ⋮ ⋮ ⋱ ⋮ ⋮
𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 𝐶𝑈𝑁−4 ⋯ 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−3 𝐶𝑈𝑁−𝑀−2 ⋯ 𝒬1𝐶

′ 𝛬1

𝐶𝑈𝑁−1 𝐶𝑈𝑁−2 𝐶𝑈𝑁−3 ⋯ 𝐶𝑈𝑁−𝑀−1 𝐶𝑈𝑁−𝑀−2 𝐶𝑈𝑁−𝑀−1 ⋯ 𝐶𝑈1 𝒬1𝐶
′  

 
 
 
 
 
 
 
 
 

       (65)                                                                                

The basic generator for this model is also same as (59) which is concerned with only the arrival and service. 

 𝒬𝐵
′′ =  𝐴′′0 +  𝐴′′1 + 𝐴′′2. This is also block circulant. Using similar arguments given for Model (A) it can be 
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seen that its probability vector is w ′ =  
w

𝑁
,

w

𝑁
,

w

𝑁
, … ,

w

𝑁
  , where w = (ϕ1𝜑1 , ϕ2𝜑2 , …, ϕ𝑘∗𝜑𝑘∗) and the stability 

condition remains the same. Following the arguments given for Sub Case (A3) in section 2.2.2 of Model (A), 

one can find the stationary probability vector for Sub Case (B2) of Model (B) also in modified matrix geometric 

form. All the performance measures given in section 2.3 including the expectation of customers waiting for 

service and its variance for Sub Case (A3) are valid for Sub Case (B2) of Model (B) except M is replaced by N.         

                         

IV. NUMERICAL ILLUSTRATION 
For the BMAP/M/C bulk models, the varying environment is considered to be governed by the Matrix 𝒬1 =

 −5 5
1 −1

 . Nine examples three for each are studied for the cases M = N =3; M = 3, N= 2 and M = 2, N = 3 

with the number of servers in each case as C = 2, 3 and 4. Matrix geometric results are seen for C = 2 and C = 3 

≤ M or N. Modified Matrix Geometric results are seen when C = 4 > M and N.  

The service time parameters of exponential distributions are respectively fixed in the two environments E1 and 

E2 as 𝜇1 = 5 𝑎𝑛𝑑 𝜇2 = .5 for single server respectively.  

For the case M=3, BMAP, the batch Markovian arrival process for E1 is given by 𝐷0
1 =  

−2 1
2 −3

 , 𝐷1
1 = 

 . 2 . 3
. 32 . 48

 ,  𝐷2
1 =  

. 12 . 18

. 08 . 12
 , 𝐷3

1 =  
. 08 . 12

0 0
  and BMAP for the environment E2 is given by 𝐷0

2 = 

 
−3 1
1 −4

 ,      𝐷1
2 =  

. 72 . 48
1.62 1.08

 ,  𝐷2
2 =  

. 48 . 32

. 18 . 12
 , 𝐷3

1 =  
0 0
0 0

 .  

For the case M=2, 𝐷𝑖
1 for i=0 and i=1 and 𝐷𝑖

2 for i = 0, 1, 2, 3 are as given above for the case M = 3 but it is 

assumed that  𝐷2
1=  

. 2 . 3
. 08 . 12

  and 𝐷3
1 =  

0 0
0 0

 .  

The bulk size service probabilities are given in table 1for the case when M = N = 3 for the two environment.  

For the case M =3, N=2 the probabilities of bulk service size 2 in E1 is fixed as .5 and of bulk size 3 in E1 is 

fixed as 0; and other probabilities are unchanged.  

                                                       Table 1: Service probabilities 
Environment 1 P(size 1) P(size 2) P(size 3) Environment 2 P(size 1) P(size 2) P(size 3) 

Service .5 .3 .2 Service .8 .2 0 

 

Thirty iterations are performed for all the models to iterate the rate Matrix R and the norms of convergence are 

recorded. Queue length probabilities and block size probabilities are calculated. Expected queue length and 

Standard deviation are presented. They show significant variations when M, N and C are changed. The 

probabilities of queue lengths and block sizes are presented in figures 1 and 2 for all the nine examples. 

Table2: Results Obtained For Six Matrix Geometric Models with Servers C=2, 3 and Three Modified 

Matrix Geometric Models with Servers C=4. 
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Figure 1: Probabilities of Queue lengths 
 

Figure 2: Probabilities of Block Sizes 

V. CONCLUSION 
 Two BMAP/M/C bulk service queues and their sub cases with randomly varying environments have been 

studied. The environment changes the batch Markovian arrival processes, the service rates, and the probabilities 

of bulk services. Matrix geometric ( modified matrix geometric) results have been obtained by suitably 

partitioning the infinitesimal generator by grouping of customers, environments, BMAP and PH phases together 

respectively when the number of servers is not greater than ( greater than) the maximum of the maximum arrival 

and maximum service sizes. The basic system generators of the queues are block circulant matrices which are 

explicitly presenting the stability condition in standard form. Numerical results for various bulk queue models 
are presented and discussed. Effects of variation of rates on expected queue length and on probabilities of queue 

lengths are exhibited. The decrease in arrival rates (so also increase in service rates) makes the convergence of R 

matrix faster which can be seen in the decrease of norm values. Bulk BMAP/PH/C queue with randomly 

varying environments causing changes in sizes of the PH phases may produce further results if studied since 

BMAP/PH/C queue is a most general form almost equivalent to G/G/C queue. 
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